Article Topics

The field of bioelectronic medicine combines molecular medicine, bioengineering, and neuroscience to discover and develop nerve stimulating and sensing technologies to regulate biological processes and treat disease.

Work submitted to the journal will cover topics in these disciplines but may also expand to topics in the fields of 
disease biology, bioinformatics, bioengineering, materials science, nanotechnology, neurosurgery, and device development. Ethical, legal and financial issues related to bioelectronic medicine and device development are welcomed. Significant negative results will be considered. 

The following are examples (not limitations) of topics which may be considered by the journal: basic science, preclinical science, clinical studies, transcranial modulation, telemetry, modeling, model-based control, neural decoding, algorithms, and related tools (i.e. electrodes).

Monitoring the Injured Brain

Chunyan Li and Raj K Narayan
Traumatic brain injury is a serious public health problem in the United States, accounting for nearly 1.7 million injuries and 52,000 deaths annually. The initial brain injury is made worse by secondary events which include, but are not limited to, ischemia, swelling, cell damage and brain functions abnormalities which, while posing therapeutic challenges, offer therapeutic opportunities. Unfortunately, in spite of significant efforts, no effective indisputable treatment which would effectively alleviate consequences of this often devastating event currently exists. Multimodality neuromonitoring could provide early warning of secondary brain injury and guide individualized therapy. However, it is rarely done due to the complexity of using multiple devices and the increased risk of complications. This article presents a novel multifunctional smart catheter to continuously and accurately monitor multiple physiological, metabolic and electrophysiological parameters that are vitally important in guiding the care of patients with traumatic brain injury. In addition to measuring various crucial parameters, the developed smart catheter allows for drainage of excess cerebrospinal fluid as a therapeutic strategy to reduce intracranial pressure. The studies which were performed under a rat permanent middle cerebral artery occlusion model indicate that the smart catheter, a single probe, can dynamically detect changes in cerebral glucose, lactate, oxygen, glutamate, temperature, local cerebral blood flow and intracranial pressure that correlated with spreading depression. These results demonstrate that the smart catheter is capable of simultaneous and continuous measurement of multiple brain variables, within the pathophysiology ranges observed in brain injury. The smart catheter has the potential to improve our understanding of brain pathophysiology and advance the field of neuromonitoring into a completely new era in which medical decisions will be based on comprehensive, real-time measures of brain chemistry and physiology during the critical period immediately following a brain injury.
Bioelectronic Medicine 2014
Page Range
Date Published
December 2, 2014
Article PDF
Monitoring the Injured BrainNew description1053 KB
Article Type