Article Topics

The field of bioelectronic medicine combines molecular medicine, bioengineering, and neuroscience to discover and develop nerve stimulating and sensing technologies to regulate biological processes and treat disease.

Work submitted to the journal will cover topics in these disciplines but may also expand to topics in the fields of disease biology, bioinformatics, bioengineering, materials science, nanotechnology, neurosurgery, and device development. Ethical, legal and financial issues related to bioelectronic medicine and device development are welcomed. Significant negative results will be considered. 

The following are examples (not limitations) of topics which may be considered by the journal: basic science, preclinical science, clinical studies, transcranial modulation, telemetry, modeling, model-based control, neural decoding, algorithms, and related tools (i.e. electrodes).

Impact of Bioelectronic Medicine on the Neural Regulation of Pelvic Visceral Function

William C de Groat and Changfeng Tai
Neuromodulation elicited by electrical stimulation of peripheral or spinal nerves is a U.S. Food and Drug Administered (FDA)-approved therapy for treating disorders of the pelvic viscera, including urinary urgency, urgency-frequency, nonobstructive urinary retention and fecal incontinence. The technique is also being tested experimentally for its efficacy in treating interstitial cystitis, chronic constipation and pelvic pain. The goal of neuromodulation is to uppress abnormal visceral sensations and involuntary reflexes and restore voluntary control. Although detailed mechanisms underlying the effects of neuromodulation are still to be elucidated, it is generally believed that effects are due to stimulation of action potentials in somatic afferent nerves. Afferent nerves project to the lumbosacral spinal cord, where they release excitatory neurotransmitters that activate ascending pathways to the brain or spinal circuits that modulate visceral sensory and involuntary motor mechanisms. Studies in animals revealed that different types of neuromodulation (for example, stimulation of a sacral spinal root, pudendal nerve or posterior tibial nerve) act by releasing different inhibitory and excitatory neurotransmitters in the central nervous system. In addition, certain types of neuromodulation inhibit visceral smooth muscle by initiating reflex firing in peripheral autonomic nerves or excite striated sphincter muscles by initiating reflex firing in somatic efferent nerves. This report will provide a brief summary of (a) neural control of the lower urinary tract and distal bowel, (b) clinical use of neuromodulation in the treatment of bladder and bowel dysfunctions, (c) putative mechanisms of action of neuromodulation on the basis of animal experiments and (d) new approaches using combination therapies to improve the efficacy of neuromodulation.
Bioelectronic Medicine 2015
Page Range
Date Published
January 22, 2015
Article PDF
New fileNew description9308 KB
urinary tract diseases, de Groat, Tai, neuromodulation, neural regulation, pelvic visceral function, neurostimulation, incontinence, bladder dysfunction, bowel dysfunction
Article Type
Invited Review Article